Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters.
نویسندگان
چکیده
We present the influence of a substrate on the properties of well-dispersed individual ZnO nanorods (NRs) with different diameters, especially on the photoluminescence (PL) properties. The studied ZnO NRs were partially supported by the quartz substrate and partially suspended in air. Continuous redshift and intensity decrease of the near band-edge emission (NBE) were observed along the suspended segment of the ZnO NRs due to the increasing temperature under UV laser excitation, suggesting that the presence of the substrate can effectively enhance the heat-sinking capability of ZnO NRs. Based on the PL measurements on individual suspended ZnO NRs with diameters from 86 nm to 2.35 μm, the redshift of NBE along the suspended segment was more obvious for ZnO NRs with a smaller diameter, indicating that the thermal conductive ability increases as diameter increases. Additionally, by combining the experimental and simulation results, we found that the presence of the substrate also quenched the whispering gallery modes (WGMs) of the ZnO NRs with a diameter above about 350 nm due to the symmetry breaking induced by the quartz substrate which has a larger refractive index compared with air. Our studies confirm that the substrate significantly influences the properties of ZnO NRs. To fully utilize the potential properties of nanomaterials for applications in nanodevices, the substrate-induced effects should be considered thoughtfully.
منابع مشابه
بررسی اثر پیش ماده و ضخامت لایهی بذر بر ریخت و ویژگی اپتیکی نانومیلههای اکسید روی برای کاربرد در سلولهای خورشیدی پلیمری
In this research, ZnO nanorods were grown via hydrothermal method on the glass substrate. The effect of precursor and the thickness of the seed layer on the structural and optical properties of grown ZnO nanorods were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-vis spectroscopy. The XRD patterns indicated that the nanorods had wrutzite ...
متن کاملInfluence of Cr dopant on the microstructure and optical properties of ZnO nanorods
One-dimensional (1D) undoped and Cr doped ZnO nanorods with average length of 1 µm and diameter of 80 nm were synthesized using hydrothermal method where a fast growth of ZnO nanorods on the seed layer was observed. Afterwards, the effects of Cr dopant on structural, surface morphology and optical properties of nanorods were studied using X-ray diffraction (XRD), scanning electron microscopy (S...
متن کاملFast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate
Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...
متن کاملStructural, Optical and Ultra-Violet Photodetection Properties of ZnO Nanorods with Various Aspect Ratios
ZnO nanorods with various lengths were synthesized by a two-stage route (by changing the time of growth between 0-240 min) and were characterized using XRD, SEM, UV–Vis and PL techniques. The SEM and XRD results confirmed a fast growth of (0 0 2) plane in the preferential longitudinal orientation, in contrast to lateral growth and therefore, by increasing the time of hydrothermal growth, nanoro...
متن کاملEffect of growth time on ZnO thin films prepared by low temperature chemical bath deposition on PS substrate
ZnO thin films were successfully synthesized on a porous silicon (PS) substrate by chemical bathdeposition method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM),and photoluminescence (PL) analyses were carried out to investigate the effect of growth duration(3, 4, 5, and 6 h) on the optical and structural properties of the aligned ZnO nanorods. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2014